If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+6m-2=0
a = 4; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·4·(-2)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{17}}{2*4}=\frac{-6-2\sqrt{17}}{8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{17}}{2*4}=\frac{-6+2\sqrt{17}}{8} $
| -2/3(7/6x+9)=8 | | -2n-12=-18 | | -59(x-2)=15 | | 8p+6=-3p-3 | | 9/12=12/x | | -2=-(n—8) | | -6(-8x+2)-2x=-2 | | 6+3x=4x+2 | | 57=4x-8+6x-15 | | 4(3=5x)-2(3x-5)=42 | | -8x-9+4x=-9x-3 | | 61=(2x+15) | | (6x+6)=(x-4) | | 5m-2(m+3)=6 | | 24x^2+5x=3 | | 3x(x+2)=x+2 | | -11+4n=5n-11+17 | | 9-4(6x+3)=3 | | -9x+3=-6 | | z-18=-5 | | 32=5r-3 | | x3-4x=20 | | 8x-2x+60=8x+24 | | 12x-9=-9 | | -12x^2+64=0 | | 4x+3=8x+6 | | 0.5x+13=7 | | 7(7+5p)+8(8+8p)=14 | | 3n-1=-13+n | | p^2=-p+6 | | 8m=2 | | 5x-7÷3x+1=1 |